
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP013904
TITLE: A Combination of Up- and Down-Going Plane Waves Used to
Describe the Field Inside Grooves of a Deep Grating

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: 2002 International Conference on Mathematical Methods in
Electromagnetic Theory [MMET 02]. Volume 2

To order the complete compilation report, use: ADA413455

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP013889 thru ADP013989

UNCLASSIFIED



410 MME*02 PROCEEDINGS

A COMBINATION OF UP- AND DOWN-GOING PLANE WAVES
USED TO DESCRIBE THE FIELD

INSIDE GROOVES OF A DEEP GRATING
Yoichi Okuno, Da-Qing Zhou, Koji Yoshimoto, Akira Matsushima

Kumamoto University, Kumamoto 860-8555, Japan
Toyonori Matsuda

Kumamoto National College of Technology, Nishigoshi 861-1 102, Japan

INTRODUCTION
The purpose of the present research is to extend the range of application of Yasuura's method
[1,2] in solving the problem of diffraction by a grating. Although alternative terminology for
the method (e.g., a least-squares boundary residual method or a modified Rayleigh method)
exists, we employ the name throughout this paper.
It is an accepted knowledge [3, 4] that Yasuura's method, in particular, the conventional
Yasuura method with Floquet modes as basis functions does not have a wide range of
application. Although the convergence of the sequence of solutions obtained by the method is
proven, the rate of convergence is often so slow for deep gratings that we cannot find solutions
with accuracy. Let D and 2H be the period and the depth of a sinusoidal grating made of a
perfectly conducting metal. The period is assumed to be comparable to the wavelength, i.e., we
are working in the resonance region. For an E-wave (s polarization) problem where 2H/D = 0.5,
taking 71 Floquet modal functions, we can obtain a solution with 1 percent error in both energy
conservation and boundary condition. Employment of additional Floquet modal functions
easily causes numerical trouble in making least-squares approximation on the boundary. Hence,
a practical limit in 2H/D in the E-wave case is 0.5 so long as we use conventional double-
precision arithmetic. Similarly, the limit in the H-wave (p polarization) case seems to be a little
less than 0.4.
To accelerate the convergence of solutions, Yasuura's method is equipped with a smoothing
procedure [5, 6]. It has been shown that: in the above problem, we can obtain a solution with I
percent error using 17-41 modal functions (the number depends on the order of the smoothing
procedure and on the polarization). Hence, Yasuura's method with the smoothing procedure is
effective in making a systematic research that needs to handle problems with complicated
boundaries, e.g., Fourier gratings.
Although Yasuura's method with the smoothing procedure solves most of the problems for
commonly used gratings, the limit in 2H/D has as yet been scarcely dealt with. There still is a
limit at 211/D = 0.7 or 0.8 even if we employ
the smoothing procedure. This limitation EU'.,,(o1.Hi ) P(xy)

can be removed practically by the following " H U
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STATEMENT OF THE PROBLEM Y=YQ-2 .......... ..........2..............
Let the cross section of the grating be Y=YQI

Let th cross secti n of t e gratng be Y=YQ-1 ................................ ... ........ ..........

periodic in X as shown in Fig. 1. The depth Y=YQ . . .L........1  ....................
is in Y and y = f(x) represents the profile. -H Lo L

f(x) is a sinusoidal function with a period Fig. 1. Geometry of the problem.
D and a depth 2H. The profile is the
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boundary between two regions U(Y > f(X)) and L(Y < f(x)). U is a vacuum and L is filled

with a dielectric with a relative refractive index n. We consider the problem to seek diffracted
waves in U and L assuming a plane E-wave incidence that comes from the positive Ydirection.

METHOD OF ANALYSIS
The basic idea of the present method includes two strategies. First, in constructing an
approximate solution inside the grooves in U (or in L), we employ down-going (or up-going)
Floquet modes in addition to the up-going (or down-going) solutions. This would expand the
function space spanned by the modal functions and make the boundary matching easy. Second,
in consideration of the ill nature of higher-order evanescent modes (They strongly oscillate in X
and rapidly increase or decrease in Y), we divide the regions inside the grooves into a couple of
sub-regions and define approximate solutions in each sub-region. This may be understood as a
kind of normalization of the modal functions.
To do this, we first separate a groove region UG (f(x) < Y < H) from a free space region Uo
(Y > H). UG and U0 are sub-regions of U having a common border at Y = H. Another groove
region LG (-H < Y < f(X)) and a homogeneous half plane L0 (Y < -H) are defined similarly.
Approximate solutions in U0 and L0 take the form of commonly employed modal expansion
satisfying the radiation condition. That is, an approximate solution in U0 (or in L0) is a sum of
up-going (or down-going) plane waves.
Next, we slice the groove regions to have Q layers. UG is divided into {U1, U2,..., UO} and a
horizontal line Y = (l>2q/Q)H (q = 0, 1,..., QI) is the boundary between U, and Uq,,.
Similarly, LG is divided into {L1, L2,..., LQ} by horizontal lines Y = (2r/Q <_ I)H (r = 0, 1,...,
Q>I). Consequently, we have 2Q sub-regions in one period (0 < X < D). As a matter of fact,
we have 3Q sub-regions because either UG or LG should be partitioned into two. We, however,
regard the groove region consists of 2Q sub-regions because the latter partition is not essential.
Each sub-region has its own local coordinates and modal functions are defined in each sub-
region. It should be noted that: the set of modal functions in Uq includes not only up-going
separated solutions but also down-going solutions. Similarly, the set in L,. includes both down-
and up-going waves. An approximation in a sub-region (Uq or L,.: q, r = 1, 2,..., Q) is a finite
sum of up- and down-going modal functions with unknown modal coefficients.
Now we have 2(2N+ 1)(2Q + 1) unknown coefficients in total: 2(2N+ 1) for Uo and LO; 2Q(2N
+ 1) for Uq; and 2Q(2N + 1) for Lr. Here, N is the number of truncation and summation should
be taken from - Nthrough N. The coefficients are determined so that the approximate solutions
satisfy the boundary conditions. We employ the least-squares method noting that a sub-region
is enclosed with two horizontal lines and a part of grating profile.

NUMERICAL RESULTS AND DISCUSSIONS
Results of numerical computation and a couple of comments are itemized as follows:
(1) If 2H/D < 0.5, the result obtained by the present method agrees well with the results by the

conventional Yasuura method.
(2) Comparison with an existing data [7] shows good agreement at 2H/D = 1.0 for an E-wave

incidence (Figs. 2 and 3 (Q = 4, N = 11, 0.04 % energy error)) and for an H-wave incidence
(Figs. 4 and 5 (Q = 13, N = 16, 0.9 %)).

(3) A personal computer (Pentium 1.7 GHz, RAM 512 MB) can handle an E-wave problem
with a depth 2H/D = 1.7 (Q = 11, N= 7, 1 %; or 16, 5, 0.4 %). Because this limitation in
2H/D comes from memory requirement, we can employ the technique of sequential
accumulation [8] to extend the range of application.

(4) If we construct approximations in Uq (or in L,) employing up-going (or down-going) waves
alone, we cannot obtain convergent solutions for 2H/D > 1.0. This means that the
normalization of the modal functions alone is not so effective as the combined strategies.
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(5) We have succeeded in establishing a method of modal-expansion that solves the problem of
deep gratings. We are planning to employ the method in solving the problem of a stratified
grating in which the boundaries between layers have a common period but do not have a
common profile.
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